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Abstract. We present a comparison of different numerical techniques for the in-
tegration of variational equations. The methods presented can be applied to any
autonomous Hamiltonian system whose kinetic energy is quadratic in the gener-
alized momenta, and whose potential is a function of the generalized positions.
We apply the various techniques to the well-known Hénon-Heiles system, and
use the Smaller Alignment Index (SALI) method of chaos detection to evaluate
the percentage of its chaotic orbits. The accuracy and the speed of the integra-
tion schemes in evaluating this percentage are used to investigate the numerical
efficiency of the various techniques.

1. Introduction. The determination of the stability of motion is of great importance
when investigating nonlinear dynamical systems. To distinguish correctly between
regular and chaotic motion, several different methods have been developed during
the years. Most of these techniques, such as the maximal Lyapunov exponent [15],
the fast Lyapunov indicator [4] or the Smaller Alignment Index (SALI) [14], rely on
the study of the time evolution of deviation vectors from a given orbit to discriminate
between the two regimes. The time evolution of these vectors is governed by the so-
called variational equations.

Besides the correct determination of the regular or chaotic nature of individual
orbits, in many cases, statistical statements over a large region of the phase space
are also needed. For example, in order to determine the percentage of regular and
chaotic orbits in a given system, the characterization of many orbits is required.
In addition to the accurate computation of chaos indicators also for such tasks the
CPU time needed to perform these computations becomes very important. In this
work we compare different numerical techniques for the integration of the variational
equations, concentrating on their accuracy and computational speed.

The paper is organized as follows: in section 2 we describe the general layout
of our investigation. We concentrate our study on a simple two degrees of freedom
Hamiltonian system: the well-known Hénon-Heiles system [7], which is presented
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in section 2.1. In our study we use the SALI method of chaos detection, which is
presented in section 2.2. To solve the equations of motion of the Hénon-Heiles system
and the associated variational equations one has to employ numerical methods. Any
non-symplectic general-purpose integrator can be used for this task. In sections 2.3.1
and 2.3.2 we present two such techniques, which we use in our study. In [16] it
was shown that it is also possible to use methods based on symplectic integration
techniques to solve these equations. In section 2.3.3 we describe shortly the most
efficient of these techniques: the so-called tangent map (TM) method. A numerical
procedure to obtain relatively fast information on the nature of orbits for a large
set of initial conditions is then given in section 2.4. In section 3 we present our
numerical results for individual orbits, as well as global results for the whole system.
The summary and the conclusions of our study are found in section 4.

2. Numerical integration of variational equations.

2.1. Hénon-Heiles system. The Hamiltonian function of the Hénon-Heiles system
[7] is

H(q1, q2, p1, p2) =
1

2
(p21 + p22) +

1

2
(q21 + q22) + q21q2 −

1

3
q32 , (1)

with q1, q2 being the generalized coordinates and p1, p2 the conjugate momenta. The
orbit evolution is given by the standard Hamilton equations of motion

q̇i =
∂H

∂pi
and ṗi = −

∂H

∂qi
, i = 1, 2, (2)

where the dot denotes derivation with respect to time t. The time evolution of the
variations δqi, δpi (which can be considered as coordinates of a deviation vector) is
governed by the variational equations, given by

˙δqi = δpi and ˙δpi = −

2
∑

j=1

∂2H

∂qi∂qj
δqj , i = 1, 2. (3)

Eqs. (2) and (3) form a coupled system of ordinary differential equations. It should
be noted that the solution of (3) depends explicitly on the solution of (2), i. e. on
the reference orbit qi(t), pi(t), and thus Eq. (3) cannot be solved independently from
Eq. (2).

2.2. SALI method. The evaluation of the SALI is an efficient and simple method
to determine the regular or chaotic nature of orbits in dynamical systems. The
SALI was proposed in [14] has since been successfully applied in order to distinguish
between regular and chaotic motion both in symplectic maps and Hamiltonian flows
[17, 18, 13, 12, 3, 11, 19]. For the computation of the SALI of a given orbit, one
has to follow the time evolution of the orbit itself and also of two deviation vectors
V1(t), V2(t), which initially point in two different directions. Then, according to [14]
the SALI is defined as

SALI(t) = min
{∥

∥

∥
V̂1(t) + V̂2(t)

∥

∥

∥
,
∥

∥

∥
V̂1(t)− V̂2(t)

∥

∥

∥

}

, (4)

where ‖ · ‖ denotes the usual Euclidean norm and V̂i, i = 1, 2 are normalized vectors
with norm equal to 1.

The SALI has a completely different behavior for regular and chaotic orbits, and
this allows us to clearly distinguish between them. In particular, the SALI fluctuates
around a non-zero value for regular orbits, while it tends exponentially to zero for



INTEGRATION OF VARIATIONAL EQUATIONS 477

chaotic orbits [14, 17], following a rate which depends on the difference of the two
largest Lyapunov exponents [18].

2.3. Used numerical methods.

2.3.1. DOP853. The DOP853 1 integration method belongs to the big class of explicit
Runge-Kutta methods. This non-symplectic scheme of order 8 is based on the method
of Dormand and Price (see [5, Sect. II.5]). We use this integrator to solve the set of
differential equations composed of Eqs. (2) and (3). Two free parameters, τ and δ,
are used to control its numerical performance. The first one defines the time span
between two successive outputs of the computed solution. After each step of length
τ the deviation vectors are renormalized and the value of SALI is computed. For the
duration of each step τ , the integrator adjusts its own internal time step in order to
keep the local one-step error smaller than a user-defined threshold value δ. For the
DOP853 integrator the estimation of this local error and the step size control is based
on embedded formulas of orders 5 and 3.

2.3.2. Taylor methods. The basic idea of the so-called Taylor series methods (for
details see for example [5, Sect. I.8] and references therein) is to approximate the
solution at time ti + τ of a given s-dimensional initial value problem

dy(t)

dt
= f(y(t)) y ∈ R

s, t ∈ R (5)

from the nth degree Taylor series of y(t) at t = ti as

y(ti + τ) ' y(ti) + τ
dy(ti)

dt
+

τ2

2!

d2y(ti)

dt2
+ . . .+

τn

n!

dny(ti)

dtn
. (6)

The computation of the derivatives is commonly done using automatic differentiation
(see for example [8]).

In our study we use two different public available implementations of the Taylor
method: TIDES 2 [2] and TAYLOR 3 [8]. Both methods have internal automatic
order and step size computation to ensure the user-defined local one-step error δ.
Also here the parameter τ defines the step size, after which the renormalization of
the deviation vectors and the computation of SALI is done.

The whole testbed of our work is written using the FORTRAN programming lan-
guage exploiting extended double precision4. While TIDES offers directly a FOR-
TRAN integration routine, a wrapper to include the routine written in C had to be
used for TAYLOR. Therefore for the latter only 16 significant digits were available
for the integration.

2.3.3. TM method. Besides general-purpose integrators, it is also possible to use tech-
niques based on symplectic methods to integrate the Hamilton equations of motion
and the corresponding variational equations. This was shown in [16], where a thor-
ough discussion of possible methods can be found. The most effective of these tech-
niques, the TM method, is used in this work. Let us outline its basic idea, which is
founded on a general result stated for example in [9]: Symplectic integrators can be

applied to first order differential systems Ẋ = LX , that can be written in the form
Ẋ = (LA+LB)X , where L,LA, LB are differential operators defined as Lχf = {χ, f}

1Freely available from http://www.unige.ch/~hairer/software.html.
2Freely available from http://gme.unizar.es/software/tides.
3Freely available from http://www.maia.ub.es/~angel/taylor/software/.
4Corresponding to 18 significant digits or equivalently to a machine accuracy of ≈ 10−19.
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and for which the two systems Ẋ = LAX and Ẋ = LBX are integrable. Here {f, g}
are Poisson brackets of functions f(q,p), g(q,p) defined as:

{f, g} =

N
∑

l=1

(

∂f

∂pl

∂g

∂ql
−

∂f

∂ql

∂g

∂pl

)

. (7)

The set of Eqs. (2) and (3) is one example of such a system, because Hamiltonian
(1) can be divided into two integrable parts A and B with H = A(p) + B(q). A
symplectic integrator splits the equations of motion (2) into several parts, applying
either the operator LA or LB. These are the equations of motion of the Hamiltonians
A and B, which can be solved analytically, giving explicit mappings over the time
step ciτ , where the constants ci are chosen to optimize the accuracy of the integrator.
These mappings can then be combined to approximate the solution after time step
τ . In [16] it was shown that the derivative of these mappings - with respect to the
coordinates and momenta of the system (the so-called tangent maps) - can be used for
the time evolution of deviation vectors or, in other words, for solving the variational
equations (3). We note that the TM method is called the ‘global symplectic integrator
method’ in [10].

In [9] a family of symplectic integrators called SABAn and SBABn was introduced,
with n being the number of applications of operators LA and LB. These integrators
have only positive intermediate steps and can be used with an additional corrector
step C at the beginning and the end of each step τ to increase their accuracy. An
integrator of order 4 of this family, namely the SBAB2C integrator which includes
corrector steps, is used in our investigation. A detailed description of the application
of the SBAB2C integrator for the TM method to the Hénon-Heiles system can be
found in [16].

2.4. Fast PSS method. Besides information on the chaotic or regular character
of individual orbits, a more global description of dynamical systems is also of inter-
est. For example, such a study could include the computation of the percentage of
regular/chaotic orbits for a given set of initial conditions (ICs). This information
requires the integration of the equations of motion/variational equations, and the
computation of a chaos indicator for the whole set of ICs, which can become a very
hard computational task. In order to address this problem, we implement a method
proposed in [1], which exploits the Poincaré surface of section (PSS) of the system in
order to speed up this computation.

For a fixed value of Hamiltonian (1) (throughout our study we use always H =
0.125) we define the PSS of the system as the plane given by q1 = 0 and p1 ≥ 0.
Each point in this plane defines a set of values (q2, p2). To evaluate the percentage of
regular orbits, one normally computes for each point the value of some chaos indicator
using a dense set of points on the PSS as ICs. In Fig. 1 we consider a grid of 400×400
ICs and color each one according to its SALI value at t = 3000.

Each orbit starting from any IC intersects the PSS in many points, and so, its
SALI value can be attributed to all orbits having these intersection points as ICs.
Therefore all these ICs do not have to be integrated separately. This procedure
decreases drastically the CPU time needed for the global description of the system’s
chaoticity. We refer to this approach as the fast PSS method.
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Figure 1. The PSS of the Hénon-Heiles system (1) for q1 = 0 and
p1 ≥ 0. A grid of 400 × 400 initial conditions is used and each
initial condition is colored in grey-scale according to its SALI value
at t = 3000. Black dots forming five closed curves correspond to
the regular orbit R1 of Fig. 2, while the scattered black dots are
intersection points of the chaotic orbit C1 of Fig. 3 with the PSS.

3. Numerical results.

3.1. Individual orbits. Let us first investigate, how well the different methods de-
scribed in section 2.3 can determine the nature of individual orbits. We use these
methods to integrate Eqs. (2) and (3), and then we compute the evolution of the
SALI in order to determine the nature of the orbit. Unless otherwise stated, we al-
ways renormalize the deviation vectors after each time step of length τ = 0.05. For
the non-symplectic routines we adopt a one-step accuracy of δ = 10−5.

As representative examples we consider 3 orbits of the Hénon-Heiles system with
different dynamical behaviors. The evolution of the SALI for a regular orbit (R1) is
presented in Fig. 2, while in Fig. 3 we have similar results for a chaotic orbit (C1).
Finally, in Fig. 4 the SALI of a sticky chaotic orbit (C2) is shown.
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Figure 2. Time evolution of the SALI for the regular orbit R1 with
initial conditions q1 = 0, p1 ≈ 0.2334, q2 = 0.558, p2 = 0.

From Fig. 2 we see that the results obtained for orbit R1 by the different integration
methods are nearly identical. As theory predicts a constant SALI for regular motion,
such behavior is correctly identified for orbit R1. Information concerning the numer-
ical performance of various techniques for orbit R1 is given in Table 1 (throughout
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Figure 3. Time evolution of the SALI for the chaotic orbit C1 with
initial conditions q1 = 0, p1 ≈ 0.4208, q2 = −0.25, p2 = 0.
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Figure 4. Time evolution of the SALI for the sticky chaotic orbit
C2 with initial conditions q1 = 0, p1 ≈ 0.11879, q2 = 0.335036 and
p2 = −0.385631.

this paper the reported CPU times refer to an Intel Xeon X5660, 2.80 GHz com-
puter). From the results reported in this table, we see that differences between the
applied methods appear in their energy conservation properties, as is indicated by the
relative energy error |∆H/H |, shown in Fig. 5. For the symplectic algorithm (TM
method) |∆H/H | shows fluctuations around 10−8, while it grows with time for the
other methods as expected (see for example [6, Sect. IX.8]). The TAYLOR method
has the worst performance since it is able to conserve the energy only up to an error
level of ≈ 10−6 for δ = 10−5. This is probably due to the 2 digits less in accuracy that
are available for this method (see section 2.3). The best method with respect to the
energy conservation is the TIDES algorithm for which the relative error is ≈ 10−13

(δ = 10−5) and ≈ 10−16 (δ = 10−16) at t = 107. The price paid for the excellent
accuracy of the algorithm is that TIDES requires, in general, the largest CPU times
and the highest orders among the tested methods.

Orbit C1 is also correctly identified as chaotic by all methods in less than 1000
time units, within which SALI goes to zero (Fig. 3). A difference is found in the
results for the sticky chaotic orbit C2 (Fig. 4). Up to t ≈ 106 all methods indicate
a regular behavior. It is only afterwards that SALI goes to zero for the TM, the
DOP853 and the TIDES methods, correctly identifying C2 as a sticky chaotic orbit.
For the used values of δ and τ the TAYLOR method does not succeed to show the
decrease of SALI to zero, at least up to t = 107.

3.2. Global results. In order to find the percentage of regular and chaotic orbits
of the Hénon-Heiles system (1), we compute for a grid of 400× 400 ICs on the PSS
the SALI value for different final times tfinal. One could argue that due to the finite
resolution with which the grid of ICs is taken on the PSS, the fast PSS method
(Sec. 2.4) would not be as accurate as the individual computation of SALI for each
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Table 1. Information on the performance of the different numeri-
cal methods used for the computation of the evolution of the regular
orbit R1, of two deviation vectors from it and of its SALI. The step
size τ was always 0.05. The order used by the TIDES and TAY-
LOR methods is determined by these routines for each step τ and is
constant for the whole integration.

integrator method CPU time Relative energy error order

SBAB2C TM 04m 02s 2× 10−8 4
DOP853 δ = 10−5 09m 05s 7× 10−11 8
DOP853 δ = 10−16 15m 58s 1× 10−11 8
TIDES δ = 10−5 15m 45s 4× 10−13 10
TIDES δ = 10−16 39m 39s 1× 10−16 23

TAYLOR δ = 10−5 15m 00s 4× 10−6 7
TAYLOR δ = 10−16 67m 01s 4× 10−13 20
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Figure 5. The time evolution of the relative energy error |∆H/H |
for the different integration schemes in the case of the regular orbit
R1. The step size τ was 0.05 for all methods. For all non-symplectic
methods we set (a) δ = 10−5 and (b) δ = 10−16. The relative energy
error for the TM method is the same for both panels and is reported
only for reference, since for this method no one-step accuracy δ is
defined.

IC. The percentages (over the total number of ICs compatible with Hamiltonian
(1)) of regular (SALI ≥ 10−4), chaotic (10−8 > SALI), and sticky chaotic orbits
(10−4 > SALI ≥ 10−8) obtained by both approaches using the TM method, are
shown in Fig. 6(a), while the required CPU times are reported in Fig. 6(b). From
the results of Fig. 6 we see that both approaches obtain practically the same values,
while the CPU time needed by the fast PSS method remains considerably smaller
with respect to the full integration of individual orbits. For this reason we apply the
fast PSS method for computing the percentages of regular, chaotic and sticky chaotic
orbits for different values of the time step τ and the final time tfinal. The obtained
results can be found in Table 2.

From the results of Table 2 we see that for large values of τ and tfinal (τ = 0.50
and tfinal = 106) the non-symplectic methods find 3− 4% less regular orbits than the
TM method. In order to understand this discrepancy we computed for orbit R1 the
evolution of the SALI by the DOP853, the TIDES and the TAYLOR methods with
τ = 0.50 and δ = 10−5 (Fig. 7). From Fig. 7 we see that all non-symplectic methods
fail to detect correctly the regular character of the orbit because SALI drops to zero
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Figure 6. (a) Percentage of regular, chaotic and sticky chaotic or-
bits as a function of tfinal, when each initial condition is integrated
until time tfinal (black dots) and when the fast PSS method was used
(solid lines). The orbits are characterized according to their SALI
value at time tfinal as regular (SALI ≥ 10−4), chaotic (10−8 > SALI)
and sticky chaotic (10−4 > SALI ≥ 10−8). A grid of 400×400 initial
conditions on the PSS of Fig. 1 was used. The integrations of the
orbit and the deviation vectors were done by the TM method using
the SBAB2C integrator with a step size τ = 0.05. (b) The CPU time
needed for the computation of the results shown in (a).

after t = 106. Such behaviors lead to the increase of the percentage of sticky chaotic
orbits in Table 2, since some regular orbits are wrongly characterized as sticky or
chaotic. Decreasing δ to values ≤ 10−14 solves the problem, as it leads to a correct
identification of the orbit’s nature, but also increases the required CPU time (see
Fig. 7).
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Figure 7. Time evolution of the SALI for the regular orbit R1 for
τ = 0.50. For the DOP853, the TIDES and the TAYLOR non-
symplectic methods we set δ = 10−5 (black line) and δ = 10−14

(grey line). The required CPU times are given as labels of the various
lines.

For smaller values of τ the results obtained from different techniques are more
consistent. For large integration times all methods give a similar percentage of regular
orbits of ≈ 40%. TM, DOP853 and TIDES agree here within 0.01%. For τ = 0.01
and t = 106 the TM method clearly discriminates between regular and chaotic orbits,
while all other methods still find ≈ 0.3% of sticky chaotic orbits. But since the
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Table 2. Percentage of regular, chaotic and sticky chaotic orbits
for different values of the final time tfinal and the step length τ , for
the integration schemes presented in section 2.3. A grid of 400× 400
initial conditions on the PSS of Fig. 1 is used. δ was set to 10−5 for
the non-symplectic methods. The required CPU times are reported
in the last column.

τ tfinal method % regular % sticky chaotic % chaotic CPU time

0.50 104 TM 40.89 0.38 58.73 0 h 02 min
DOP853 40.18 0.79 59.02 0 h 04 min
TIDES 40.18 0.79 59.02 0 h 04 min

TAYLOR 40.18 0.79 59.02 0 h 05 min

0.50 105 TM 40.05 0.07 59.88 0 h 09 min
DOP853 39.71 0.37 59.92 0 h 14 min
TIDES 39.22 0.49 60.29 0 h 17 min

TAYLOR 40.19 0.47 59.34 0 h 15 min

0.50 106 TM 40.00 0.00 60.00 1 h 21 min
DOP853 36.94 2.59 60.47 1 h 29 min
TIDES 35.78 3.71 60.51 2 h 06 min

TAYLOR 34.01 6.23 59.76 1 h 15 min

0.01 104 TM 40.38 0.72 58.90 0 h 19 min
DOP853 40.22 0.70 59.08 0 h 38 min
TIDES 40.22 0.70 59.08 1 h 05 min

TAYLOR 40.23 0.84 58.93 0 h 59 min

0.01 105 TM 39.39 0.57 60.04 2 h 02 min
DOP853 39.84 0.22 59.95 4 h 12 min
TIDES 39.84 0.22 59.95 7 h 20 min

TAYLOR 39.83 0.28 59.89 6 h 43 min

0.01 106 TM 40.01 0.00 59.99 19 h 26 min
DOP853 40.02 0.28 59.70 39 h 42 min
TIDES 40.02 0.28 59.70 68 h 08 min

TAYLOR 39.95 0.21 59.84 62 h 32 min

SALI of those orbits will eventually go to zero as well, it can be expected that also
the non-symplectic methods will give the same results as the TM method when the
integration time is increased.

4. Summary and conclusions. We considered the problem of fast and accurate
integration of the variational equations of a conservative Hamiltonian system. We
compared different numerical techniques for this task, and applied them to the Hénon-
Heiles system. We considered non-symplectic methods of high accuracy; particularly
the DOP853 scheme, as well as the TIDES and TAYLOR packages, which are based
on Taylor expansion techniques. We also applied the TM method, which exploits
symplectic integrators, using in particular the SBAB2C integrator.

The variational equations govern the evolution of small deviations from a given
orbit. Using the SALI chaos indicator, which is defined through the time evolution
of deviation vectors, we determined the chaotic or regular nature of individual orbits.
In addition, applying an efficient numerical approach, the so-called fast PSS method,
we were able to rapidly identify regions of order and chaos in the phase space of the
system.

Our numerical results show that the TM method had the best numerical perfor-
mance both in accuracy and in speed, especially for large integration steps, when the
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other non-symplectic schemes failed to compute accurately the fraction of regular and
chaotic motion. For moderate integration steps all applied methods gave practically
the same results, with the TM method being always faster.

Among the non-symplectic algorithms the TIDES was the most accurate one pro-
ducing similar results as the DOP853 integrator. In many cases the results of the
TAYLOR method were found to be less accurate than the ones obtained by the other
methods, probably due to some implementation peculiarities of the algorithm.
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[7] M. Hénon and C. Heiles, The applicability of the third integral of motion: some numerical
experiments Astron. J., 69 (1964), 73–79.

[8] A. Jorba and M. Zou, A Software Package for the Numerical Integration of ODEs by Means

of High-Order Taylor Methods, Experimental Mathematics, 14 (2005), 99–117.
[9] J. Laskar and P. Robutel, High order symplectic integrators for perturbed Hamiltonian systems,

Cel. Mech. Dyn. Astr., 80 (2001), 39–62.
[10] A.-S. Libert, C. Habaux and T. Carletti, Symplectic integration of deviation vectors and chaos

determination. Application to the Hénon-Heiles model and to the restricted three-body problem.,
MNRAS, 414 (2011), 659–667.

[11] T. Manos, Ch. Skokos, E. Athanassoula and T. Bountis, Studying the global dynamics of con-
servative dynamical systems using the SALI chaos detection method Nonlin. Phenom. Complex
Syst., 11 (2008), 171–176.

[12] P. Panagopoulos, T. C. Bountis and Ch. Skokos, Existence and stability of localized oscillations
in 1-dimensional lattices with soft spring and hard spring potentials J. Vib. & Acoust., 126

(2004), 520–527.
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